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The effect of compressibility on vertical boundary layers, of thickness Ei  and 
respectively (see Stewartson 1957), in a rapidly rotating gas of constant tem- 

perature is studied. Such layers have been considered by Nakayama & Usui 
(1974). However, these authors used a power-series expansion of the basic density 
field in their calculations, which m e w  that their results are not uniformly valid 
in the boundary-layer co-ordinate. In this paper, a uniformly valid asymptotic 
solution and a numerical solution for the velocity field in each layer are computed. 
The asymptotic solutions are valid for scale heights of the basic density field large 
in terms of the reference length for the respective boundary layer. The agreement 
between the asymptotic and numerical solutions is shown to be good. Although 
the limits considered have no meaning for density scale heights of the order of the 
respective boundary-layer thickness, one can formally find an exact solution for 
the Ef-layer for any density scale height. In the limit of large density scale height 
this solution agrees to third order with the corresponding asymptotic solution. It 
is shown that for both layers the boundary-layer thickness increases (decreases) 
if the basic density field decremes (increases) in the direction of the respective 
boundary-layer co-ordinate. 

1. Introduction 
The flow to be discussed is that of a viscous, thermally conducting, ideal gas 

contained in a straight axisymmetric container with a flat top and bottom. The 
container is rotating around its axis of symmetry. The cross-section may be 
circular or annular. The rate of rotation is assumed to be large, so that effects of 
gravity and axial stratification are negligible in comparison with that of the 
radial StratScation. For rigid rotation of a gas of constant temperature under 
such circumstances the density field is given by 

(1) 

where the reference density is that at the outer periphery, r,, = outer radius of 
container divided by half its height, r = radial position divided by half the con- 
tainer height, y = ratio of specific heats at constant pressure and volume and 
M = peripheral Mach number. In the following, h e a r  axisymmetric and time- 
independent perturbations from the isothermal state of rigid rotation are con- 
sidered, and the structure of the vertical boundary layers is investigated in some 

Po = exp {4rJf2[(r/ro)a - 111, 
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detail. The perturbation flow is assumed to be caused by differential rotation of 
the top and bottom. Qualitatively similar effects can be obtained by differential 
heating of the top and bottom (Sakurai & Matsuda 1974). For simplicity, the 
container walls are assumed to be kept, by external means, at the same tempera- 
ture as the gas in its unperturbed state. Extension of the results given below to 
shear layers in the interior of the container is straightforward (cf. Nakayama & 
Usui 1974). Also, the methods used can be directly carried over to the somewhat 
more complicated boundary layers occurring when mass is injected and removed 
at vertical boundaries (Greenspan 1968, p. 106). 

2. Fundamental equations 
A cylindrical co-ordinate system (r, q5, z} is introduced with the z axis assumed 

to coincide with the axis of rotation and the lengths r and z non-dimensionalized 
with half the container height. The top and the bottom are assumed to be a t  
z = 1. A detailed derivation of the equations in this section was given, in a 
somewhat different notation, by Sakurai & Matsuda (1974) and Nakayama & 
Usui (1974). If starred variables are the dimensional perturbation quantities, 
suitable definitions for the non-dimensional variables are 

u = (u, v, w) = u*/eQH (velocity), 

p = p*/erR2H2po(ro) (pressure), 

P = p*/q-4hJ (density ), 
T = T*/eTo (temperature), 

where 8 is the Rossby number, Q the angular velocity of the basic rigid rotation, 
2H the height of the container and To the temperature of the basic isothermal 
state. In the following To is set equal to unity. The Ekman number, which is 
assumed to be small, is defined as 

E = ruIPo(r0) QH2, 

where ,u is the dynamic shear viscosity. Viscous effects due to pure dilatation are 
neglected. 

The non-dimensional equations for the perturbation flow can then be written 
as 

- 2p0 v - rp + 8ppr = E(V2 - r2) u, (2 a) 

2p0u = E(V2-r -2 )~ ,  ( 2 b )  

8p/& = EV2w, ( 2 4  

where 
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The Prandtl number u is assumed to be of order unity, c, is the specific heat a t  
constant volume and k is the thermal diffusivity. The first three of these equations 
are the momentum equations in the radial, tangential and axial directions. 
Equation (2 d )  is the continuity equation and (2 e) is the heat conduction equation. 
The last equation is the equation of state. 

3. Brief discussion of the perturbed flow 
If the density scale height is not too small, in which case viscous and diffusive 

flow occurs in the interior of the container, it is reasonable to assume that the 
flow away from the solid boundaries has a geostrophic character (Howard 1973, 
private communication; Sakurai & Matsuda 1974; Nakayama & Usui 1974). 
This interior flow is given by the limiting solutions of (2a-f) when the Ekman 
number approaches zero and was computed by Sakurai & Matsuda (1974) for 
small Mach number and differential heating of the container walls. These authors 
showed that the interior swirl velocity is not independent of the vertical co-ordi- 
nate as in the case of a homogeneous fluid. Sakurai & Matsuda (1974) and 
Nakayama & Usui (1974) also computed the Ekman layers at  the horizontal 
boundaries needed to satisfy the no-slip and thermal boundary conditions. At 
vertical boundaries, one must also construct boundary-layer solutions in order to 
satisfy the boundary conditions. These layers must also take care of the radial 
mass transport, of order E*, induced by Ekman-layer pumping at the top and 
bottom. In the incompressible case this is accomplished, by two overlapping 
boundary layers of thicknesses E* and E+ (Stewartson 1957). The E h y e r  in the 
compressible case was considered by Sakurai & Matsuda (1974) for the case when 
the ratio of the density scale height to the boundary-layer thickness is infhitely 
large. Nakayama & Usui (1974) considered both the E*- and the Ea-layer, but 
their results are not valid far away from the wall. It is the purpose of the present 
work to investigate what happens when the scale height of the basic density field 
is large, but finite, compared with E* and/or E+. For such a situation it seems to 
be reasonable to assume that the mechanics of the side-wall layers, although 
very complicated, are only moderately affected by compressibility. We thus 
assume that the same limits of the governing equations as in the incompressible 
case have physical meaning and look for solutions of the boundary-layer equa- 
tions when the ratio of density scale height to boundary-layer thickness is large 
but finite. 

4. Outline of the calculations 
In  $ 5  the swirl velocity in the E*-layer is considered. Both an exact and an 

asymptotic multiple-scale solution are obtained. It is shown that these solutions 
agree to third order when the density scale height becomes large. In  $ 7  the 
computation of a numerical solution is described. The reason for computing a 
numerical solution is that for the E+-layer no exactl solution can be found for 
comparison with the asymptotic one. However, the results for the Ea-layer show 
that the numerical solutions described in $ 7  are very likely to be excellent 
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approximations to the corresponding exact solutions for the type of boundary- 
layer problem coxwidered. In $ 6  an asymptotic solution for the stream 
function for the meridiond flow in the E*-layer is computed. The agreement 
between this solution and the corresponding numerical one is shown to be good 
even for rather moderate scale heights of the basic density field. Comparisons me 
also made with the solutions given by Nakayama & Usui (1974). 

5. The Ef-layer 
In the usual way, a stretched variable 7 is defined as 

7 = (ro -r)/Ei.  

At the inner boundary, if any, a trivial redefinition of 7 has to be made. As a very 
thin region is considered, it is legitimate, to first order, to neglect the quadratic 
variation in the exponent in the formula (1) for the basic density field, and the 
following approximation can be used: 

where 
(3) 

(4) 

and where the plus sign is to be used at  an inner boundary and the minus sign at  
an outer. A meaningful perturbation problem can be formulated if the dependent 
variables are assumed to be of the following orders of magnitude: 

u = O(Ei),  v = O(l),  w = O(Ef), p = O(Ef), T = O(I), p = O(1). 
(6*f 1 

For each of these quantities an expansion in powers of Ef with the leading term 
scaled according to ( 6 a - f )  is assumed. The system of equations for the leading 
terms in these expansions follows directly from (2 a-f) and reads 

- 4a%0poU = aaT/aya, (64 
( 6 f )  P +Po T = ( ~ / r o ) P .  

T + 2a2r0 v = 0, 

From ( 6 b )  and ( 6 c )  one finds, after eliminating u and integrating twice with res- 
pect to 7, 

(6g )  
where the constants of integration have been equated to zero in view of the 
boundary-layer character of v and T .  Accordingly, the following boundary 
condition is to be imposed on v and T at 7 = 0:  

T + (TI) + 2aaro (V + ( ~ 1 ) )  = 0, ( 6 h )  

where T, and vz are the interior temperature and swirl velocity evaluated at 
r = ro and the angular brackets stand for vertical averages. 
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The boundary conditions at  the top and the bottom are given by the Ekman- 
suction formulae, which for this flow have been derived by Howard (1973, 
private communication').t For the Ef-layer, the Ekman-suction formulae give, 
to first order, 

where K~ = (1 +a2r$ and the plus sign is to be chosen at the top and the minus 
sign at the bottom. Combination of ( 6 b )  and ( 6 4  gives 

= f ~p+2a(p~q/a7 ,  (7) 

a3qa73 = 2p0 awlax. 
From (6a-f) it follows that &.u/az is a function of 7 only. This function can be 
found by application of the boundary conditions (7), which yields 

&.up2 = ~~2p; la(p~w)/a~ .  ( 8 b )  

Equations (Sa, b) give, after one integration, 

a2vla72 - ~2 e@qv = 0. (9) 

The constant of integration is determined from the requirement that v shall have 
exponential decay for arbitrarily small 6. 

In order to investigate the general structure of the Ef-layer there is, in view 
of ( 6 5  h), no loss of generality in using the following simplified boundary con- 
ditions for w: 

w(0) = 1, w+O as q++m. (10) 

The exact solution1 of (9) is 

(11) V = C1 I,( 4 K  I&1 I d8?) + C 2  KO( 4 K  Id-' I et'q), 

where I, and KO are modified Bessel functions of the first and second kind res- 
pectively and c1 and c, are constants. For 7 large but finite and 161 arbitrarily 
small one finds that 

Ro(4Ks1ef8?)/K~(4K&1), 6 > 0, (1-w 
(12b) 

are acceptable boundary-layer solutions for vanishing Ekman number, i.e. 
vanishing 6. Formally, the solution given by (12a) has boundary-layer behaviour 
for 6 h i t e  and greater than zero, but this is not the limit under consideration 
here. For 6 fixed and negative, one finds that w is transcendentally small in 6 for 
infinitely large 7. The asymptotic expansion of (12a, b )  for small 161 and fixed 
7 reads (Erddlyi et al. 1953, p. 86) 

' = ( ~ o ( 4 K i s 1 , ~ f a * ) / ~ ~ ~ 4 K 1 6 1 ) ) ,  6 < 0, 

Of course, this solution reduces to the incompressible case for vanishing 6. Next, 

-f These formulae can, of course, also be easily derived from the results given by 
Sakurai & Matmda (1974) or Nakayama & Usui (1 974). 

2 The solution (11) was pointed out t o  UB by Dr S. Johansson. 
48 F L M  78 
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FIGURE 1. &-layer. (a)  Two-term Nakayama & Usui (1974) solution, two- and three-term 
asymptotio solution, numerical solution and exact solution for 6 = - 0.25. (a) The same as 
(a) for 6 = + 0.25. .--, incompressible case. 

an asymptotic solution is computed directly from (9) subject to (10). Following 
Cole (1968, p. 102), a 'fast' variable q+ and a 'slow' variable i j  are defhed as? 

q+ can be viewed as the original variable q distorted by the slow variation of the 
kinematic viscosity. For the leading terms in the formerly assumed expansion in 
powers of Ef another expansion of the form 

is assumed. Substitution of (14) in (9) gives 

t In this case the choice of fast and slow variables is obvious from (13). However, for the 
&'*-layer no guidance equivalent to (13) is available. 
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0 

FIG- 2. &layer. (a) Two- and three-term asymptotic solution, numerical solution and 
exact solution for 6 = - 1. (b )  Two-term Nakayama & Usui (1974) solution for 6 = - 1. 
( 0 )  The same aa (a) for 6 = + 1. (d)  The same 88 (b )  for 6 = f 1. --. , incompressible 
case. 

The physically significant solution of (15a) is 

where R(ij) is determined from the requirement that vl has to be non-secular on 
the r+-scale. This implies that the ‘forcing’ term in the equation (15b) for v1 has 
to be zero.? Proceeding in this manner to third order, one obtains 

This expression agrees with ( 13). 
In figures 1 and 2, the forms u(q) according to (12) and (16) are shown for 

6 = 0-25 and 6 = f 1. a%$ = 0.2 in all cases. For comparison solutions obtained 
by numerical integration (see $7)  are also shown. For all these values of 6 the 
exact, numerical and asymptotic (two and three terms respectively) solutions are 
indistinguishable. The reason for this good agreement for moderate values of 6 is 
that 4~lSl-l  rather than I c Y I - ~  has to be large for a meaningful asymptqtic expan- 
sion; see (12). For 6 = 5 0.25 it can be seen that the two-term Nakayama-Usui 
(1974) solution works excellently and for 6 = 4 1 the error is still not too large, in 
spite of the fact that this solution was constructed for very small 6. 

f Cf. Cole (1968). 

48-2 
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6.  The E*-layer 
The stretched variable f at the outer bouridary is defined as 

fl  = (ro -r) /E+.  (17) 

At the inner boundary a trivial redefinition has to be made. The basic density 
field is given by (3), in which S now is defined as 

6 = 4a2yroE*/r(y- i), 

where the plus and minus signs apply a t  the inner and outer boundary respec- 
tively. Taking into account that this layer is transporting a mass flux of order 
E), one finds that a meaningful perturbation problem results if the dependent 
variables are of the following orders of magnitude: 

u = O(E*),  PI = O(E*), w = O(EQ), p = O(E*), T = O(E*), p = O(EQ). 
(18a-f 1 

Scaling the perturbation quantities according to (18a-j) one finds from (2a-j) 
the equations 

- 2p0 v - rop - aplag = 0, ( 1 9 4  

2p0u = a2vlap, ap1,laX = a2w/a.g=, ( 1 9 h  4 
- a(po +po awlaz = 0, ( 1 9 4  

- 4a%opou = P T / a p ,  ( 1 9 d  

(191) 

po u = a+laz, pow = a+pg.  b) 

P +Po T = ( W 0 ) P .  

In  view of (19d)  it is convenient to introduce a stream function + defined by 

Substituting (20a, b)  into (19a-e),  one obtains after some straightforward calcu- 
lations 

From (21 a, b )  one thus finds a single equation for $: 

The injection of the radial Ekman-layer flux into the Ei-layer at  the top corner 
takes place in a square region of area of order E, which in the limit is a point on the 
BQ-scale. Therefore, this injection can be modelled by a point source within the 
present approximation. Similarly, the removal of mass at the bottom corner can 
be modelled by a point sink. As the axial mass flux, of order E*, in this layer is 
too strong to be accepted by a divergent Ekman layer, the stream function must 
be set to zero on the top and bottom. This gives a non-zero horizontal velocity 
component at  the top and bottom (e.g. see Nakayama & Usui 1974), which 
necessitates Ekman-layer corrections having a horizontal scale E).  These correc- 
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tions are not considered in this work. Furthermore, for simplicity only the part 
of the flow in the E*-layer caused by the Ekman-layer transport is considered. 
Corrections to the interior flow can be treated in the same manner. Thus the 
following boundary conditions are imposed on $: 

$ = O  for z = + f ,  ( 2 3 4  

(23h  4 

$/-to as t++oo. ( 2 3 4  

Equation (23d) follows from (21 a) and requiring zero swirl velocity at the bound- 
ary. Equation (6g) is valid in this layer too, which means that the boundary 
condition for the temperature is also fulfilled. 

The z dependence is conveniently separated out by putting 
+ m  

If one chooses $k(O) = 1 conditions (23a, b)  determine the coefficients ak. One 
then obtains 

which is to be solved subject to the following boundary conditions: 

$k = 1, d $ k / d c  = 0 for = 0, (2% b)  

The problem is to find the limiting solutions of (21) when the non-dimensional 
density scale height 8-l becomes large. The procedure to be used is very similar 
to  the one used for the Ei-layer. An expansion 

is assumed where the 'fast ' and ' slow ' variables are defined as 

After some rather lengthy algebra, one h d s  

m 

P=O 
( & - A + L = -  Ln,JDkp, m - 1 )  ..., 4, 
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These equations are solved in the same manner as those for the Ei-layer, i.e. the 
undetermined functions of E appearing in the solution are determined by the 
requirement that each akm has to be non-secular on the 6+ scale. After some 
further algebra, one finds 

The constants Ct,, C& etc. are successively determined from the following 
system of equations, corresponding to the boundary conditions (23b-d) at - g+=g=o :  

$kO = l ,  a$kO/%+ = 0, a4$kO/at+4 = O ,  
$km = 0 for m > 0, 

a$km/ac+ + a$k(m-,/@ = O, 

where the operators M;, are defined by 
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FIGUREi3. &-layer, 6 = + 0.5. - - -, numerical solution. (a) Two-term asymptotic solution. 
(b )  Two-term Nakayama & Usui (1974) solution. .-. , incompressible case. 

FIGURE 4. E+-layer, 6 = - 0.5. - - -, numerical solution. (a) Two-term asymptotic solution. 
(b) Two-term Nakayamrt & UBui 11974) solution. --., incompressible cese. 
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In figures 3 and 4 numerical (see 5 7) and two-term asymptotic solutions for the 
axial velocity in the E)-layer are shown for S = f 0.5. a2r3 = 0-2 in all cases. The 
corresponding NakayamacUsui (1 974) soiutions are also shown in these graphs. 
For these values of S it turns out that adding extra terms to the asymptotic solu- 
tion gives only minor improvements. It can be seen from figure 3 that, perhaps 
somewhat surprisingly, both the Nakayama-Usui solution and the present 
asymptotic solution agree well with the numerical solution for 6 = 0.5. However 
for 6 = - 0.6, as shown in figure 4, the non-uniformity for large 6 in the Naka- 
yameUsui solution shows up. In  this case the asymptotic solution starts bending 
away from the numerical solution near 5 = 4, which indicates that a ' super-slow' 
variable SaE is needed for an accurate asymptotic solution for values of 6 larger 
than 4 (cf. Nayfeh 1973, p. 228). For 6 = - 0.25 (not shown here) the Nakayame 
Usui solution is acceptable. For the curves in these figures seven terms in the 
rather poorly converging sum (24) were computed and nonlinear extrapolation 
was used for the summation (Shanks 1965). Numerical experiments indicated 
that the relative error is smaller than 

7. Numerical solutions 
For comparison with the asymptotic solutions, numerical solutions for both 

layers have been computed. In  order to obtain starting values for a numerical 
integration, a straightforward procedure would be to compute the asymptotic 
behaviour of the solutions at large distances from the wall for small 6. However, 
in order to reduce the range of the independent variable to save computer time, 
another route was followed. The method is to let the computer select the linear 
combination of the exact solutions which satisfies the correct boundary condi- 
tions a t  the wall and is a regular perturbation from the incompressible case a t  
some large but finite distance (an integral number of step lengths) from the wall. 
The perturbation solution was computed to second order in the ratio of boundary- 
layer thickness to the scale height of the basic density field. The actual computa- 
tion is straightforward but involves some tedious algebra and is therefore not 
reproduced here. Such a solution is, of course, only valid locally but this is all we 
need to start a numerical integration. This calculation can in principle be carried 
out analytically for the Ea-layer, but the algebra becomes rather extensive and 
numerical integration was used instead. The procedure is heuristic and would 
certainly not work for strongly oscillating functions having the same order of 
magnitude over the interval considered. However, since the results were found 
from numerical experiments to depend very weakly on where the outer boundary 
condition is applied, the method can be expected to give reasonable results. The 
reason why this procedure works is, of course, that the physically insignificant 
solutions decay very rapidly as the numerical integration proceeds inwards to the 
wall. In  the incompressible case these solutions will decay exponentially. 

Equation (26) cannot be integrated numerically using standard methods for 
large values of A and positive values of 6. The reason for this is that rapidly 
growing parasitic errors will contaminate the two solutions having the smallest 
growth rates as the numerical integration proceeds towards the wall. This pheno- 
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menon is well known in the theory of hydrodynamic stability. In the present 
work the method of orthogonalization (e.g. see Wazzan, Okamura & Smith 
1967) was used to overcome this difficulty. 

8. Conclusions 
For density scale heights large but finite compared with Ei and/or E h h e  

effect of compressibility on vertical boundary layers in a rapidly rotating gas is to 
thicken these layers at an outer container wall. At an inner wall the reverse is 
true. For the Ek-layer an exact solution and a multiple-scale type of asymptotic 
solution have been computed. These solutions agree at least to third order for a 
large density scale height and are in very good agreement with a numerical 
solution. For the E*-layer no exact solution could be found but the asymptotic 
and numerical solutions show good agreement. For the very large density scale 
heights the NakayamccUsui (1974) solutions were found to give reasonable 
results. 

The authors are very much indebted to Professor M.T.Landah1 for many 
discussions and for his suggestions for improvements of earlier drafts of this 
paper. The authors have also benefited from some very illuminating discussions 
of the physics of rotating compressible fluids with Professor L. N. Howard. 
Dr S .  B. Johansson has provided many valuable points of view. Mr L. H. Gustavs- 
son gave invaluable help with the numerical solution of (21). 
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